Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00340508" target="_blank" >RIV/67985840:_____/10:00340508 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries
Original language description
We study the incompressible limit for the full Navier-Stokes-Fourier system on unbounded domains with boundaries, supplemented with the complete slip boundary condition for the velocity field. Using an abstract result of Tosio Kato we show that the energy of acoustic waves decays to zero on any compact subset of the physical space. This in turn implies strong convergence of the velocity field to its limit in the incompressible regime.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0315" target="_blank" >GA201/08/0315: Mathematical analysis of complex systems in fluid mechanics</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Physics
ISSN
0010-3616
e-ISSN
—
Volume of the periodical
294
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
23
Pages from-to
—
UT code for WoS article
000272614400004
EID of the result in the Scopus database
—