All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00340508" target="_blank" >RIV/67985840:_____/10:00340508 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Incompressible Limits and Propagation of Acoustic Waves in Large Domains with Boundaries

  • Original language description

    We study the incompressible limit for the full Navier-Stokes-Fourier system on unbounded domains with boundaries, supplemented with the complete slip boundary condition for the velocity field. Using an abstract result of Tosio Kato we show that the energy of acoustic waves decays to zero on any compact subset of the physical space. This in turn implies strong convergence of the velocity field to its limit in the incompressible regime.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F08%2F0315" target="_blank" >GA201/08/0315: Mathematical analysis of complex systems in fluid mechanics</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Mathematical Physics

  • ISSN

    0010-3616

  • e-ISSN

  • Volume of the periodical

    294

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    23

  • Pages from-to

  • UT code for WoS article

    000272614400004

  • EID of the result in the Scopus database