A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00343853" target="_blank" >RIV/67985840:_____/10:00343853 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A generalized anti-maximum principle for the periodic one-dimensional p-Laplacian with sign-changing potential
Original language description
It is known that the anti-maximum principle holds for the quasilinear periodic problem (vertical bar u'vertical bar(p-2)u')' + mu(t) (vertical bar u vertical bar(p-2)u) = h(t), u(0) = u(T), u'(0) = u'(T), if mu >= 0 in [0, T] and 0 < parallel to mu parallel to(infinity) <= (pi(p)/T)(p), where pi(p) = 2(p - 1)(1/p) integral(1)(0) (1 - s(p))(-1/p) ds, or p = 2 and 0 < parallel to mu parallel to(alpha) <= inf {parallel to u'parallel to(2)(2)/parallel to u parallel to(2)(alpha) : u is an element of W-0(1,2)[0, T] backslash {0}} for some alpha, 1 <= alpha <= infinity. In this paper we give sharp conditions on the L-alpha-norm of the potential mu(t) in order to ensure the validity of the anti-maximum principle even in the case where mu(t) can change its signin [0, T].
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA100190703" target="_blank" >IAA100190703: Singular nonlinear boundary value problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis: Theory, Methods & Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
7-8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
—
UT code for WoS article
000275265700018
EID of the result in the Scopus database
—