Compact embeddings of Bessel-Potential-Type spaces into generalized Hölder spaces involving k-modulus of smoothness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00354220" target="_blank" >RIV/67985840:_____/11:00354220 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4171/ZAA/1421" target="_blank" >http://dx.doi.org/10.4171/ZAA/1421</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ZAA/1421" target="_blank" >10.4171/ZAA/1421</a>
Alternative languages
Result language
angličtina
Original language name
Compact embeddings of Bessel-Potential-Type spaces into generalized Hölder spaces involving k-modulus of smoothness
Original language description
We present conditions which are necessary and sufficient for compact embeddings of Bessel potential spaces H ? X(IRn ), modelled upon a rearrangement-invariant Banach function spaces X(IRn ), into generalized Hölder spaces involving k-modulus of smoothness. To this end, we derive a characterization of compact subsets of generalized Hölder spaces. We apply our results to the case when X(IRn ) is a Lorentz-Karamata space Lp,q;b(IRn ). Applications cover both superlimiting and limiting cases.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F08%2F0383" target="_blank" >GA201/08/0383: Function Spaces, Weighted Inequalities and Interpolation</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für Analysis und Ihre Anwendungen
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
27
Pages from-to
1-27
UT code for WoS article
000289586800001
EID of the result in the Scopus database
—