Optimal Embeddings of Bessel-Potential-Type Spaces into Generalized Hölder Spaces Involving k-Modulus of Smoothness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F10%3A00335002" target="_blank" >RIV/67985840:_____/10:00335002 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimal Embeddings of Bessel-Potential-Type Spaces into Generalized Hölder Spaces Involving k-Modulus of Smoothness
Original language description
We establish necessary and sufficient conditions for embeddings of Bessel potential spaces H? X(IRn) with order of smoothness ? (0, n), modelled upon rearrangement invariant Banach function spaces X(IRn), into generalized Hölder spaces (involving k-modulus of smoothness). We apply our results to the case when X(IRn) is the Lorentz-Karamata space Lp,q;b (IRn). In particular, we are able to characterize optimal embeddings of Bessel potential spaces H? Lp,q;b (IRn) into generalized Hölder spaces. Applications cover both superlimiting and limiting cases. We also show that our results yield new and sharp embeddings of Sobolev-Orlicz spaces Wk+1Ln/k(log L)?(IRn) and WkLn/k(log L)?(IRn) into generalized Hölder spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Potential Analysis
ISSN
0926-2601
e-ISSN
—
Volume of the periodical
32
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
28
Pages from-to
—
UT code for WoS article
000274961500001
EID of the result in the Scopus database
—