All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Orbits in real Z(m)-graded semisimple Lie algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00359321" target="_blank" >RIV/67985840:_____/11:00359321 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Orbits in real Z(m)-graded semisimple Lie algebras

  • Original language description

    We propose a method to classify homogeneous nilpotent elements in a real Zm-graded semisimple Lie algebra g. Using this we describe the set of orbits of homogeneous elements in a real Z2-graded semisimple Lie algebra. A classification of 4-vectors (resp.4-forms) on R8 can be given using this method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/IAA100190701" target="_blank" >IAA100190701: Investigating manifolds with special structures from topological and geometric-analytical points of view</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Lie Theory

  • ISSN

    0949-5932

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    21

  • Pages from-to

    285-305

  • UT code for WoS article

    000291124500003

  • EID of the result in the Scopus database