The provably total search problems of bounded arithmetic
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F11%3A00369680" target="_blank" >RIV/67985840:_____/11:00369680 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1112/plms/pdq044" target="_blank" >http://dx.doi.org/10.1112/plms/pdq044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/plms/pdq044" target="_blank" >10.1112/plms/pdq044</a>
Alternative languages
Result language
angličtina
Original language name
The provably total search problems of bounded arithmetic
Original language description
We give combinatorial principles GI(k), based on k-turn games, which are complete for the class of NP search problems provably total at the kth level T(2)(k) of the bounded arithmetic hierarchy and hence characterize the for all Sigma(b)(1) consequencesof T(2)(k). Our argument uses a translation of first-order proofs into large, uniform propositional proofs in a system in which the soundness of the rules can be witnessed by polynomial time reductions between games. We show that for all(Sigma) over cap(b)(1)(alpha) conservativity of T(2)(i+1) (alpha) over T(2)(i)(alpha) already implies. for all(Sigma) over cap (b)(1)(a) conservativity of T(2)(alpha) over T(2)(i)(alpha). We translate this into propositional form and give a polylogarithmic width CNF (GI(3)) over bar such that if (GI(3)) over bar has small R(log) refutations then so does any polylogarithmic width CNF which has small constant depth refutations. We prove a resolution lower bound for (GI(3)) over bar.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LC505" target="_blank" >LC505: Eduard Čech Center for Algebra and Geometry</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the London Mathematical Society
ISSN
0024-6115
e-ISSN
—
Volume of the periodical
103
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
33
Pages from-to
106-138
UT code for WoS article
000292311700004
EID of the result in the Scopus database
—