All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Transmission problem for the Laplace equation and the integral equation method

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00370680" target="_blank" >RIV/67985840:_____/12:00370680 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2011.09.041" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2011.09.041</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2011.09.041" target="_blank" >10.1016/j.jmaa.2011.09.041</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Transmission problem for the Laplace equation and the integral equation method

  • Original language description

    We shall study a weak solution in the Sobolev space of the transmission problem for the Laplace equation using the integral equation method. First we use the indirect integral equation method. We look for a solution in the form of the sum of the double layer potential corresponding to the skip of traces on the interface and a single layer potential with an unknown density. We get an integral equation on the boundary. We prove that this equation has a form (I + M)phi = F where M is a contractive operator. So, we can obtain a solution of this equation using the successive approximation method. Moreover, we are able to estimate the norm of the operator M and control how quickly this process converges. Then we study the direct integral equation method. Weobtain the same integral equation like for the indirect integral equation method. So, we can again calculate a solution using the successive approximation method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    387

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    837-843

  • UT code for WoS article

    000297229900031

  • EID of the result in the Scopus database