Transmission problem for the Laplace equation and the integral equation method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00370680" target="_blank" >RIV/67985840:_____/12:00370680 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2011.09.041" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2011.09.041</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2011.09.041" target="_blank" >10.1016/j.jmaa.2011.09.041</a>
Alternative languages
Result language
angličtina
Original language name
Transmission problem for the Laplace equation and the integral equation method
Original language description
We shall study a weak solution in the Sobolev space of the transmission problem for the Laplace equation using the integral equation method. First we use the indirect integral equation method. We look for a solution in the form of the sum of the double layer potential corresponding to the skip of traces on the interface and a single layer potential with an unknown density. We get an integral equation on the boundary. We prove that this equation has a form (I + M)phi = F where M is a contractive operator. So, we can obtain a solution of this equation using the successive approximation method. Moreover, we are able to estimate the norm of the operator M and control how quickly this process converges. Then we study the direct integral equation method. Weobtain the same integral equation like for the indirect integral equation method. So, we can again calculate a solution using the successive approximation method.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
387
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
837-843
UT code for WoS article
000297229900031
EID of the result in the Scopus database
—