All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On shape stability of incompressible fluids subject to Navier's slip condition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00373951" target="_blank" >RIV/67985840:_____/12:00373951 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/s00021-011-0086-6" target="_blank" >http://dx.doi.org/10.1007/s00021-011-0086-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00021-011-0086-6" target="_blank" >10.1007/s00021-011-0086-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On shape stability of incompressible fluids subject to Navier's slip condition

  • Original language description

    The paper is concerned with the equations of motion for incompressible fluids that slip at the wall. Particular interest is in the domain dependence of weak solutions. We prove that the solutions depend continuously on the perturbation of the boundary provided that the latter remains in the class C1, 111 . The result is applicable to a wide class of shape optimization problems and is optimal in terms of boundary regularity.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LC06052" target="_blank" >LC06052: The Nečas Center for Mathematical Modeling</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Fluid Mechanics

  • ISSN

    1422-6928

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    575-589

  • UT code for WoS article

    000308064800011

  • EID of the result in the Scopus database