All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On Kurzweil-Stieltjes integral in a Banach space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F12%3A00385118" target="_blank" >RIV/67985840:_____/12:00385118 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On Kurzweil-Stieltjes integral in a Banach space

  • Original language description

    In the paper we deal with the Kurzweil-Stieltjes integration of functions having values in a Banach space $X.$ We extend results obtained by Stefan Schwabik and complete the theory so that it will be well applicable to prove results on the continuous dependence of solutions to generalized linear differential equations in a Banach space. By Schwabik, the integral $int_a^b d[F]g$ exists if $F[a,b]to L(X)$ has a bounded semi-variation on $[a,b]$ and $g [a,b]to X$ is regulated on $[a,b].$ We prove that thisintegral has sense also if $F$ is regulated on $[a,b]$ and $g$ has a bounded semi-variation on $[a,b].$ Furthermore, the integration by parts theorem is presented under the assumptions not covered by Schwabik (2001) and Naralenkov (2004), and the substitution formula is proved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Bohemica

  • ISSN

    0862-7959

  • e-ISSN

  • Volume of the periodical

    137

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    17

  • Pages from-to

    365-381

  • UT code for WoS article

  • EID of the result in the Scopus database