Distributional chaos for linear operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F13%3A00395496" target="_blank" >RIV/67985840:_____/13:00395496 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2013.06.019" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2013.06.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2013.06.019" target="_blank" >10.1016/j.jfa.2013.06.019</a>
Alternative languages
Result language
angličtina
Original language name
Distributional chaos for linear operators
Original language description
We characterize distributional chaos for linear operators on Frechet spaces in terms of a computable condition (DCC), and also as the existence of distributionally it-regular vectors. A sufficient condition for the existence of dense uniformly distributionally irregular manifolds is presented, which is very general and can be applied to many classes of operators. Distributional chaos is also analyzed in connection with frequent hypercyclicity, and the particular cases of weighted shifts and compositionoperators are given as an illustration of the previous results.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0473" target="_blank" >GA201/09/0473: Methods of function theory and Banach algebras in operator theory IV</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
265
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
21
Pages from-to
2143-2163
UT code for WoS article
000323093000012
EID of the result in the Scopus database
—