On joint numerical radius
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00425905" target="_blank" >RIV/67985840:_____/14:00425905 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/S0002-9939-2014-11876-4" target="_blank" >http://dx.doi.org/10.1090/S0002-9939-2014-11876-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/S0002-9939-2014-11876-4" target="_blank" >10.1090/S0002-9939-2014-11876-4</a>
Alternative languages
Result language
angličtina
Original language name
On joint numerical radius
Original language description
Let be bounded linear operators on a complex Hilbert space . We study the question whether it is possible to find a unit vector such that is large for all . Thus we are looking for a generalization of a well-known fact for that the numerical radius of asingle operator satisfies.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
142
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
1371-1380
UT code for WoS article
—
EID of the result in the Scopus database
—