All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A product of three projections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F14%3A00434096" target="_blank" >RIV/67985840:_____/14:00434096 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.4064/sm223-2-4" target="_blank" >http://dx.doi.org/10.4064/sm223-2-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4064/sm223-2-4" target="_blank" >10.4064/sm223-2-4</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A product of three projections

  • Original language description

    Let X and Y be two closed subspaces of a Hilbert space. If we send a point back and forth between them by orthogonal projections, the iterates converge to the projection of the point onto the intersection of X and Y by a theorem of von Neumann. Any sequence of orthoprojections of a point in a Hilbert space onto a finite family of closed subspaces converges weakly, according to Amemiya and Ando. The problem of norm convergence was open for a long time. Recently Adam Paszkiewicz constructed five subspacesof an infinite-dimensional Hilbert space and a sequence of projections on them which does not converge in norm. We construct three such subspaces, resolving the problem fully. As a corollary we observe that the Lipschitz constant of a certain Whitney-type extension does in general depend on the dimension of the underlying space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA14-07880S" target="_blank" >GA14-07880S: Methods of function theory and Banach algebras in operator theory V.</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Studia mathematica

  • ISSN

    0039-3223

  • e-ISSN

  • Volume of the periodical

    223

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    PL - POLAND

  • Number of pages

    12

  • Pages from-to

    175-186

  • UT code for WoS article

    000348884900004

  • EID of the result in the Scopus database