Do projections stay close together?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F09%3A00321374" target="_blank" >RIV/67985840:_____/09:00321374 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Do projections stay close together?
Original language description
We estimate the rate of convergence of products of projections on K intersecting lines in the Hilbert space. More generally, consider the orbit of a point under any sequence of orthogonal projections on K arbitrary lines in Hilbert space. Assume that thesum of the squares of the distances of the consecutive iterates is less than epsilon. We show that if epsilon tends to zero, then the diameter of the orbit tends to zero uniformly for all families of a fixed number K of lines. We relate this result to questions concerning convergence of products of projections on finite families of closed subspaces of the Hilbert space.
Czech name
Zůstávají projekce pohromadě?
Czech description
Článek se zabývá rychlostí konvergence iterací projekcí na K přímek v Hilbertově prostoru. Výsledek je dán do souvislosti s otázkou konvergence iterací projekci na K podprostoru Hilbertova prostoru.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F06%2F0018" target="_blank" >GA201/06/0018: Topological structures in functional analysis</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
350
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
—
UT code for WoS article
000261895900038
EID of the result in the Scopus database
—