All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Short proofs for the determinant identities

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443869" target="_blank" >RIV/67985840:_____/15:00443869 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1137/130917788" target="_blank" >http://dx.doi.org/10.1137/130917788</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130917788" target="_blank" >10.1137/130917788</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Short proofs for the determinant identities

  • Original language description

    We study arithmetic proof systems Pc(F) and Pf (F) operating with arithmetic circuits and arithmetic formulas, respectively, and that prove polynomial identities over a field F. We establish a series of structural theorems about these proof systems, themain one stating that Pc(F) proofs can be balanced: if a polynomial identity of syntactic degree d and depth k has a Pc(F) proof of size s, then it also has a Pc(F) proof of size poly(s, d) in which every circuit has depth O(k+log2 d+log d log s). As a corollary, we obtain a quasi-polynomial simulation of Pc(F) by Pf (F). Using these results we obtain the following: consider the identities det(XY) = det(X) det(Y ) and det(Z) = z11 znn, where X, Y , and Z are n n square matrices and Z is a triangular matrix with z11, . . . , znn on the diagonal (and det is the determinant polynomial). Then we can construct a polynomial-size arithmetic circuit det such that the above identities have Pc(F) proofs of polynomial size using circuits of O(log2

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Siam Journal on Computing

  • ISSN

    0097-5397

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    44

  • Pages from-to

    340-383

  • UT code for WoS article

    000353967200004

  • EID of the result in the Scopus database

    2-s2.0-84928716550