Short proofs for the determinant identities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00443869" target="_blank" >RIV/67985840:_____/15:00443869 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1137/130917788" target="_blank" >http://dx.doi.org/10.1137/130917788</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130917788" target="_blank" >10.1137/130917788</a>
Alternative languages
Result language
angličtina
Original language name
Short proofs for the determinant identities
Original language description
We study arithmetic proof systems Pc(F) and Pf (F) operating with arithmetic circuits and arithmetic formulas, respectively, and that prove polynomial identities over a field F. We establish a series of structural theorems about these proof systems, themain one stating that Pc(F) proofs can be balanced: if a polynomial identity of syntactic degree d and depth k has a Pc(F) proof of size s, then it also has a Pc(F) proof of size poly(s, d) in which every circuit has depth O(k+log2 d+log d log s). As a corollary, we obtain a quasi-polynomial simulation of Pc(F) by Pf (F). Using these results we obtain the following: consider the identities det(XY) = det(X) det(Y ) and det(Z) = z11 znn, where X, Y , and Z are n n square matrices and Z is a triangular matrix with z11, . . . , znn on the diagonal (and det is the determinant polynomial). Then we can construct a polynomial-size arithmetic circuit det such that the above identities have Pc(F) proofs of polynomial size using circuits of O(log2
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Siam Journal on Computing
ISSN
0097-5397
e-ISSN
—
Volume of the periodical
44
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
44
Pages from-to
340-383
UT code for WoS article
000353967200004
EID of the result in the Scopus database
2-s2.0-84928716550