Extremal solutions to a system of n nonlinear differential equations and regularly varying functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00445822" target="_blank" >RIV/67985840:_____/15:00445822 - isvavai.cz</a>
Alternative codes found
RIV/00216224:14410/15:00080892
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201400252" target="_blank" >http://dx.doi.org/10.1002/mana.201400252</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201400252" target="_blank" >10.1002/mana.201400252</a>
Alternative languages
Result language
angličtina
Original language name
Extremal solutions to a system of n nonlinear differential equations and regularly varying functions
Original language description
The strongly increasing and strongly decreasing solutions to a system of n nonlinear first order equations are here studied, under the assumption that both the coefficients and the nonlinearities are regularly varying functions. We establish conditions under which such solutions exist and are (all) regularly varying functions, we derive their index of regular variation and establish asymptotic representations. Several applications of the main results are given, involving n-th order nonlinear differential equations, equations with a generalized Laplacian, and nonlinear partial differential systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F10%2F1032" target="_blank" >GAP201/10/1032: Difference equations and dynamic equations on time scales III</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
288
Issue of the periodical within the volume
11-12
Country of publishing house
DE - GERMANY
Number of pages
18
Pages from-to
1413-1430
UT code for WoS article
000358957400015
EID of the result in the Scopus database
2-s2.0-84938292765