All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Sobolev spaces on bounded symmetric domains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00447597" target="_blank" >RIV/67985840:_____/15:00447597 - isvavai.cz</a>

  • Alternative codes found

    RIV/47813059:19610/15:#0000495

  • Result on the web

    <a href="http://dx.doi.org/10.1080/17476933.2015.1043910" target="_blank" >http://dx.doi.org/10.1080/17476933.2015.1043910</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/17476933.2015.1043910" target="_blank" >10.1080/17476933.2015.1043910</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Sobolev spaces on bounded symmetric domains

  • Original language description

    We obtain a formula for the Sobolev inner product in standard weighted Bergman spaces of holomorphic functions on a bounded symmetric domain in terms of the Peter?Weyl components in the Hua?Schmidt decomposition, and use it to clarify the relationship between the analytic continuation of these standard weighted Bergman spaces and the Sobolev spaces on bounded symmetric domains.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP201%2F12%2F0426" target="_blank" >GAP201/12/0426: Function theory and operator theory in Bergman spaces and their applications</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Complex Variables and Elliptic Equations. An International Journal

  • ISSN

    1747-6933

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1712-1726

  • UT code for WoS article

    000361469400007

  • EID of the result in the Scopus database

    2-s2.0-84942199086