Sobolev spaces on bounded symmetric domains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F15%3A00447597" target="_blank" >RIV/67985840:_____/15:00447597 - isvavai.cz</a>
Alternative codes found
RIV/47813059:19610/15:#0000495
Result on the web
<a href="http://dx.doi.org/10.1080/17476933.2015.1043910" target="_blank" >http://dx.doi.org/10.1080/17476933.2015.1043910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17476933.2015.1043910" target="_blank" >10.1080/17476933.2015.1043910</a>
Alternative languages
Result language
angličtina
Original language name
Sobolev spaces on bounded symmetric domains
Original language description
We obtain a formula for the Sobolev inner product in standard weighted Bergman spaces of holomorphic functions on a bounded symmetric domain in terms of the Peter?Weyl components in the Hua?Schmidt decomposition, and use it to clarify the relationship between the analytic continuation of these standard weighted Bergman spaces and the Sobolev spaces on bounded symmetric domains.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0426" target="_blank" >GAP201/12/0426: Function theory and operator theory in Bergman spaces and their applications</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Complex Variables and Elliptic Equations. An International Journal
ISSN
1747-6933
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1712-1726
UT code for WoS article
000361469400007
EID of the result in the Scopus database
2-s2.0-84942199086