Embeddings of Lorentz-type spaces involving weighted integral means
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477928" target="_blank" >RIV/67985840:_____/17:00477928 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/17:10371886 RIV/68407700:21240/17:00313049 RIV/60076658:12510/17:43896658
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2017.06.008" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2017.06.008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2017.06.008" target="_blank" >10.1016/j.jfa.2017.06.008</a>
Alternative languages
Result language
angličtina
Original language name
Embeddings of Lorentz-type spaces involving weighted integral means
Original language description
We solve the problem of characterizing weights on (0,infty) for which the inequality involving two possibly different general inner weighted means. (...0infty(...0tf*(s)m2u2(s)ds)p2m2w2(t)dt)1p2<=C(...0infty(...0tf*(s)m1u1(s)ds)p1m1w1(t)dt)1p1 holds, where p1,p2,m1,m2in(0,infty) and p2>m2. The proof is based on a new approach combining duality techniques with sharp weighted estimates for iterated integral and supremum operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-14743S" target="_blank" >GA13-14743S: Function spaces, weighted inequalities and interpolation II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
273
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
42
Pages from-to
2939-2980
UT code for WoS article
000411422900005
EID of the result in the Scopus database
2-s2.0-85021055008