On moduli for which certain second-order linear reczrrebces contain a complete system of residues modulo m
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F17%3A00477953" target="_blank" >RIV/67985840:_____/17:00477953 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On moduli for which certain second-order linear reczrrebces contain a complete system of residues modulo m
Original language description
Let u(a, b) denote the Lucas sequence defined by the second-order recursion relation un+2 = aun+1 + bun with initial terms u0 = 0 and u1 = 1, where a and b are integers. The positive integer m is said to be nondefective if u(a, b) contains a complete system of residues modulo m. All possibilities for m to be nondefective are found when b = +-1. This paper generalizes results of S. A. Burr for the Fibonacci sequence u(1, 1).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
55
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
209-228
UT code for WoS article
000412356200003
EID of the result in the Scopus database
2-s2.0-85030481794