All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Iteration of certain arithmetical functions of particular Lucas sequences

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522213" target="_blank" >RIV/67985840:_____/20:00522213 - isvavai.cz</a>

  • Result on the web

    <a href="http://hdl.handle.net/11104/0306708" target="_blank" >http://hdl.handle.net/11104/0306708</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Iteration of certain arithmetical functions of particular Lucas sequences

  • Original language description

    Let u(a, b) be a Lucas sequence satisfying the second-order recursion relation un+2 = aun+1 + bun, where b = ±1, a is an integer, and u0 = 0 and u1 = 1. Let m be a positive integer, and let π(m) denote the period of u(a, b) modulo m, and ρ(m) denote the restricted period of u(a, b) modulo m. It is shown that iterates of π(m) and ρ(m) end in either a fixed point or a cycle of length two, and all these possible fixed points and two-cycles are explicitly determined.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fibonacci Quarterly

  • ISSN

    0015-0517

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    55-69

  • UT code for WoS article

    000514222200005

  • EID of the result in the Scopus database

    2-s2.0-85088151102