Iteration of certain arithmetical functions of particular Lucas sequences
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522213" target="_blank" >RIV/67985840:_____/20:00522213 - isvavai.cz</a>
Result on the web
<a href="http://hdl.handle.net/11104/0306708" target="_blank" >http://hdl.handle.net/11104/0306708</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Iteration of certain arithmetical functions of particular Lucas sequences
Original language description
Let u(a, b) be a Lucas sequence satisfying the second-order recursion relation un+2 = aun+1 + bun, where b = ±1, a is an integer, and u0 = 0 and u1 = 1. Let m be a positive integer, and let π(m) denote the period of u(a, b) modulo m, and ρ(m) denote the restricted period of u(a, b) modulo m. It is shown that iterates of π(m) and ρ(m) end in either a fixed point or a cycle of length two, and all these possible fixed points and two-cycles are explicitly determined.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fibonacci Quarterly
ISSN
0015-0517
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
55-69
UT code for WoS article
000514222200005
EID of the result in the Scopus database
2-s2.0-85088151102