Polyconvexity for functions of a system of closed differential forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00485750" target="_blank" >RIV/67985840:_____/18:00485750 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00526-017-1298-2" target="_blank" >http://dx.doi.org/10.1007/s00526-017-1298-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00526-017-1298-2" target="_blank" >10.1007/s00526-017-1298-2</a>
Alternative languages
Result language
angličtina
Original language name
Polyconvexity for functions of a system of closed differential forms
Original language description
This paper deals with the weakened convexity properties, mult. ext. quasiconvexity, mult. ext. one convexity, and mult. ext. polyconvexity, for integral functionals of the form I(omega1,...,omegas)=...(omega1,...,omegas)dx where omega1, ... , omegas are closed differential forms on a bounded open set Omega ... Rn. The main results of the paper are explicit descriptions of mult. ext. quasiaffine and mult ext. polyconvex functions. It turns out that these two classes consist, respectively, of linear and convex combinations of the set of all wedge products of exterior powers of the forms omega1,..., omegas. Thus, for example, a function f= f(omega1,..., omegas) is mult. ext. polyconvex if and only if (Formula presented.) where q1, ..., qs ranges a finite set of integers and phi is a convex function. An existence theorem for the minimum energy state is proved for mult. ext. polyconvex integrals.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Calculus of Variations and Partial Differential Equations
ISSN
0944-2669
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
—
UT code for WoS article
000424746800027
EID of the result in the Scopus database
2-s2.0-85040328363