Isotropic polyconvex electromagnetoelastic bodies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00503789" target="_blank" >RIV/67985840:_____/19:00503789 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1177/1081286518754567" target="_blank" >http://dx.doi.org/10.1177/1081286518754567</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286518754567" target="_blank" >10.1177/1081286518754567</a>
Alternative languages
Result language
angličtina
Original language name
Isotropic polyconvex electromagnetoelastic bodies
Original language description
The recent renewal of interest in nonlinear electromagnetoelastic interactions comes from the technological importance of electro- or magnetosensitive elastomers, smart materials whose mechanical properties change instantly on the application of an electric or magnetic field. We consider materials with free energy functions of the form ..., where F is the deformation gradient, d is the electric displacement, and b is the magnetic induction. It was recently shown by the author that such an energy function is polyconvex if and only if it is of the form ... where ... is a convex function (of 31 scalar variables). Moreover, an existence theorem was proved for the equilibrium solution for a system consisting of a polyconvex electromagnetoelastic solid plus the vacuum electromagnetic field outside the body. The condition (8), is not just the combination of Ball’s polyconvexity of elastomers ... with the convexity in the electromagnetic variables.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
24
Issue of the periodical within the volume
3
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
738-747
UT code for WoS article
000463620600013
EID of the result in the Scopus database
2-s2.0-85044723387