A variational approach to nonlinear electro-magneto-elasticity: convexity conditions and existence theorems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489958" target="_blank" >RIV/67985840:_____/18:00489958 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1177/1081286517696536" target="_blank" >http://dx.doi.org/10.1177/1081286517696536</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/1081286517696536" target="_blank" >10.1177/1081286517696536</a>
Alternative languages
Result language
angličtina
Original language name
A variational approach to nonlinear electro-magneto-elasticity: convexity conditions and existence theorems
Original language description
Electro- or magneto-sensitive elastomers are smart materials whose mechanical properties change instantly by the application of an electric or magnetic field. This paper analyses the convexity conditions (quasiconvexity, polyconvexity, ellipticity) of the free energy of such materials. These conditions are treated within the framework of the general A-quasiconvexity theory for the constraints curlF=0,divd=0,divb=0, curlF=0,divd=0,divb=0, where F is the deformation gradient, d is the electric displacement and b is the magnetic induction. If the energy depends separately only on F, or on d, or on b, the A-quasiconvexity reduces, respectively, to Morrey’s quasiconvexity, polyconvexity and ellipticity conditions or to convexity in d or in b. In the present case, the simultaneous occurrence of F, d and b leads to the cross-phenomena: mechanic–electric, mechanic–magnetic and electro–magnetic.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics and Mechanics of Solids
ISSN
1081-2865
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
6
Country of publishing house
GB - UNITED KINGDOM
Number of pages
22
Pages from-to
907-928
UT code for WoS article
000433916000004
EID of the result in the Scopus database
2-s2.0-85040353919