All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A rigorous derivation of the stationary compressible Reynolds equation via the Navier-Stokes equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489055" target="_blank" >RIV/67985840:_____/18:00489055 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0218202518500185" target="_blank" >http://dx.doi.org/10.1142/S0218202518500185</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0218202518500185" target="_blank" >10.1142/S0218202518500185</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A rigorous derivation of the stationary compressible Reynolds equation via the Navier-Stokes equations

  • Original language description

    We provide a rigorous derivation of the compressible Reynolds system as a singular limit of the compressible (barotropic) Navier–Stokes system on a thin domain. In particular, the existence of solutions to the Navier–Stokes system with non-homogeneous boundary conditions is shown that may be of independent interest. Our approach is based on new a priori bounds available for the pressure law of hard sphere type. Finally, uniqueness for the limit problem is established in the one-dimensional case.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Models and Methods in Applied Sciences

  • ISSN

    0218-2025

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    36

  • Pages from-to

    697-732

  • UT code for WoS article

    000432721600003

  • EID of the result in the Scopus database

    2-s2.0-85044725731