Measure-valued solutions to the complete Euler system revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00489594" target="_blank" >RIV/67985840:_____/18:00489594 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00033-018-0951-8" target="_blank" >http://dx.doi.org/10.1007/s00033-018-0951-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00033-018-0951-8" target="_blank" >10.1007/s00033-018-0951-8</a>
Alternative languages
Result language
angličtina
Original language name
Measure-valued solutions to the complete Euler system revisited
Original language description
We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier–Stokes–Fourier system. Our main result states that any sequence of weak solutions to the Navier–Stokes–Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Zeitschrift für angewandte Mathematik und Physik
ISSN
0044-2275
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
—
UT code for WoS article
000431757800007
EID of the result in the Scopus database
2-s2.0-85046342955