Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier-Stokes variational inequality
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F18%3A00492103" target="_blank" >RIV/67985840:_____/18:00492103 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21220/18:00330238
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201700228" target="_blank" >http://dx.doi.org/10.1002/mana.201700228</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201700228" target="_blank" >10.1002/mana.201700228</a>
Alternative languages
Result language
angličtina
Original language name
Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier-Stokes variational inequality
Original language description
We prove the global in time existence of a weak solution to the variational inequality of the Navier-Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so-called 'do nothing' boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy-type estimate of the solution. We also discuss the use of a series of other possible outflow 'do nothing' boundary conditions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-03230S" target="_blank" >GA16-03230S: Thermodynamically consistent models for fluid flows: mathematical theory and numerical solution</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
291
Issue of the periodical within the volume
11-12
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
1801-1814
UT code for WoS article
000441003600012
EID of the result in the Scopus database
2-s2.0-85043311503