Characterization of embeddings of Sobolev-type spaces into generalized Hölder spaces defined by Lp-modulus of smoothness
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00497233" target="_blank" >RIV/67985840:_____/19:00497233 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10408174
Result on the web
<a href="http://dx.doi.org/10.1016/j.jfa.2018.10.023" target="_blank" >http://dx.doi.org/10.1016/j.jfa.2018.10.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2018.10.023" target="_blank" >10.1016/j.jfa.2018.10.023</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of embeddings of Sobolev-type spaces into generalized Hölder spaces defined by Lp-modulus of smoothness
Original language description
We prove a sharp estimate for the k-modulus of smoothness, modelled upon a Lp-Lebesgue space, of a function f in WkL[Formula presented],p(Ω), where Ω is a domain with minimally smooth boundary and finite Lebesgue measure, k,n∈N, k<n and [Formula presented]<p<+∞. This sharp estimate is used to establish necessary and sufficient conditions for continuous embeddings of Sobolev-type spaces into generalized Hölder spaces defined by means of the k-modulus of smoothness. General results are illustrated with examples. In particular, we obtain a generalization of the classical Jawerth embeddings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-00580S" target="_blank" >GA18-00580S: Function Spaces and Approximation</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
—
Volume of the periodical
276
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
636-657
UT code for WoS article
000453109100009
EID of the result in the Scopus database
2-s2.0-85055988674