Learnability can be undecidable
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00500071" target="_blank" >RIV/67985840:_____/19:00500071 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >http://dx.doi.org/10.1038/s42256-018-0002-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >10.1038/s42256-018-0002-3</a>
Alternative languages
Result language
angličtina
Original language name
Learnability can be undecidable
Original language description
The mathematical foundations of machine learning play a key role in the development of the field. They improve our understanding and provide tools for designing new learning paradigms. The advantages of mathematics, however, sometimes come with a cost. Gödel and Cohen showed, in a nutshell, that not everything is provable. Here we show that machine learning shares this fate. We describe simple scenarios where learnability cannot be proved nor refuted using the standard axioms of mathematics. Our proof is based on the fact the continuum hypothesis cannot be proved nor refuted. We show that, in some cases, a solution to the ‘estimating the maximum’ problem is equivalent to the continuum hypothesis. The main idea is to prove an equivalence between learnability and compression.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nature Machine Intelligence
ISSN
2522-5839
e-ISSN
—
Volume of the periodical
1
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
44-48
UT code for WoS article
—
EID of the result in the Scopus database
—