All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Learnability can be undecidable

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00500071" target="_blank" >RIV/67985840:_____/19:00500071 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >http://dx.doi.org/10.1038/s42256-018-0002-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s42256-018-0002-3" target="_blank" >10.1038/s42256-018-0002-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Learnability can be undecidable

  • Original language description

    The mathematical foundations of machine learning play a key role in the development of the field. They improve our understanding and provide tools for designing new learning paradigms. The advantages of mathematics, however, sometimes come with a cost. Gödel and Cohen showed, in a nutshell, that not everything is provable. Here we show that machine learning shares this fate. We describe simple scenarios where learnability cannot be proved nor refuted using the standard axioms of mathematics. Our proof is based on the fact the continuum hypothesis cannot be proved nor refuted. We show that, in some cases, a solution to the ‘estimating the maximum’ problem is equivalent to the continuum hypothesis. The main idea is to prove an equivalence between learnability and compression.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nature Machine Intelligence

  • ISSN

    2522-5839

  • e-ISSN

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    5

  • Pages from-to

    44-48

  • UT code for WoS article

  • EID of the result in the Scopus database