All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Differential equations for product-type foliations associated to vertex algebra

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00504867" target="_blank" >RIV/67985840:_____/19:00504867 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1088/1742-6596/1194/1/012121" target="_blank" >http://dx.doi.org/10.1088/1742-6596/1194/1/012121</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1742-6596/1194/1/012121" target="_blank" >10.1088/1742-6596/1194/1/012121</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Differential equations for product-type foliations associated to vertex algebra

  • Original language description

    We study differential equations for the transition functions defining a product-type foliation associated to a grading-restricted vertex algebra. First we prove that matrix elements for a vertex algebra defines a manifold endowed with a product-type foliation (associated to a grading-restricted vertex algebra). Finally, we prove that the transition functions for such foliation satisfy the system of partial differential equations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-00496S" target="_blank" >GA18-00496S: Singular spaces from special holonomy and foliations</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Journal of Physics: Conference series

  • ISBN

  • ISSN

    1742-6588

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    012121

  • Publisher name

    IOP

  • Place of publication

    Bristol

  • Event location

    Prague

  • Event date

    Jul 8, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article