Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00506253" target="_blank" >RIV/67985840:_____/19:00506253 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/19:10402881
Result on the web
<a href="http://dx.doi.org/10.1007/s00440-018-0875-4" target="_blank" >http://dx.doi.org/10.1007/s00440-018-0875-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00440-018-0875-4" target="_blank" >10.1007/s00440-018-0875-4</a>
Alternative languages
Result language
angličtina
Original language name
Stationary solutions to the compressible Navier-Stokes system driven by stochastic forces
Original language description
We study the long-time behavior of solutions to a stochastically driven Navier–Stokes system describing the motion of a compressible viscous fluid driven by a temporal multiplicative white noise perturbation. The existence of stationary solutions is established in the framework of Lebesgue–Sobolev spaces pertinent to the class of weak martingale solutions. The methods are based on new global-in-time estimates and a combination of deterministic and stochastic compactness arguments. An essential tool in order to obtain the global-in-time estimate is the stationarity of solutions on each approximation level, which provides a certain regularizing effect. In contrast with the deterministic case, where related results were obtained only under rather restrictive constitutive assumptions for the pressure, the stochastic case is tractable in the full range of constitutive relations allowed by the available existence theory, due to the underlying martingale structure of the noise.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-08819S" target="_blank" >GA15-08819S: Stochastic Processes in Infinite Dimensional Spaces</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Probability Theory and Related Fields
ISSN
0178-8051
e-ISSN
—
Volume of the periodical
174
Issue of the periodical within the volume
3-4
Country of publishing house
DE - GERMANY
Number of pages
52
Pages from-to
981-1032
UT code for WoS article
000475710400008
EID of the result in the Scopus database
2-s2.0-85054549818