Uniqueness of the nonlinear Schrödinger equation driven by jump processes
Result description
In a recent paper by the first two authors, existence of martingale solutions to a stochastic nonlinear Schrödinger equation driven by a Lévy noise was proved. In this paper, we prove pathwise uniqueness, uniqueness in law and existence of strong solutions to this problem using an abstract uniqueness result of Kurtz.
Keywords
Uniqueness resultsYamada–Watanabe–Kurtz theoremStochastic integral of jump typeStochastic partial differential equationsPoisson random measuresLévy processesSchrödinger equation
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Uniqueness of the nonlinear Schrödinger equation driven by jump processes
Original language description
In a recent paper by the first two authors, existence of martingale solutions to a stochastic nonlinear Schrödinger equation driven by a Lévy noise was proved. In this paper, we prove pathwise uniqueness, uniqueness in law and existence of strong solutions to this problem using an abstract uniqueness result of Kurtz.
Czech name
—
Czech description
—
Classification
Type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
GA15-08819S: Stochastic Processes in Infinite Dimensional Spaces
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nodea-Nonlinear Differential Equations and Applications
ISSN
1021-9722
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
31
Pages from-to
22
UT code for WoS article
000470690500001
EID of the result in the Scopus database
2-s2.0-85067052020
Basic information
Result type
Jimp - Article in a specialist periodical, which is included in the Web of Science database
OECD FORD
Pure mathematics
Year of implementation
2019