All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Embedding Banach spaces into the space of bounded functions with countable support

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508350" target="_blank" >RIV/67985840:_____/19:00508350 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1002/mana.201800308" target="_blank" >http://dx.doi.org/10.1002/mana.201800308</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201800308" target="_blank" >10.1002/mana.201800308</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Embedding Banach spaces into the space of bounded functions with countable support

  • Original language description

    We prove that a WLD subspace of the space lc∞(Γ) consisting of all bounded, countably supported functions on a set Γ embeds isomorphically into l∞ if and only if it does not contain isometric copies of c0(ω1). Moreover, a subspace of lc∞(ω1) is constructed that has an unconditional basis, does not embed into l∞, and whose every weakly compact subset is separable (in particular, it cannot contain any isomorphic copies of c0(ω1)).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    292

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    4

  • Pages from-to

    2028-2031

  • UT code for WoS article

    000485932500008

  • EID of the result in the Scopus database

    2-s2.0-85067418190