Embedding Banach spaces into the space of bounded functions with countable support
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00508350" target="_blank" >RIV/67985840:_____/19:00508350 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/mana.201800308" target="_blank" >http://dx.doi.org/10.1002/mana.201800308</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.201800308" target="_blank" >10.1002/mana.201800308</a>
Alternative languages
Result language
angličtina
Original language name
Embedding Banach spaces into the space of bounded functions with countable support
Original language description
We prove that a WLD subspace of the space lc∞(Γ) consisting of all bounded, countably supported functions on a set Γ embeds isomorphically into l∞ if and only if it does not contain isometric copies of c0(ω1). Moreover, a subspace of lc∞(ω1) is constructed that has an unconditional basis, does not embed into l∞, and whose every weakly compact subset is separable (in particular, it cannot contain any isomorphic copies of c0(ω1)).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
9
Country of publishing house
DE - GERMANY
Number of pages
4
Pages from-to
2028-2031
UT code for WoS article
000485932500008
EID of the result in the Scopus database
2-s2.0-85067418190