Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F19%3A00509632" target="_blank" >RIV/67985840:_____/19:00509632 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >http://dx.doi.org/10.1093/imanum/dry057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/dry057" target="_blank" >10.1093/imanum/dry057</a>
Alternative languages
Result language
angličtina
Original language name
Convergent numerical method for the Navier-Stokes-Fourier system: a stabilized scheme
Original language description
We propose a combined finite volume--finite element method for the compressible Navier–Stokes–Fourier system. A finite volume approximation is used for the density and energy equations while a finite element discretization based on the nonconforming Crouzeix–Raviart element is applied to the momentum equation. We show the stability, the consistency and finally the convergence of the scheme (up to a subsequence) toward a suitable weak solution. We are interested in the diffusive term in the form of divergence of the symmetric velocity gradient instead of the classical Laplace form appearing in the momentum equation. As a consequence, there emerges the need to add a stabilization term that substitutes the role of Korn’s inequality which does not hold in the Crouzeix–Raviart element space. The present work is a continuation of Feireisl, E., Hošek, R. & Michálek, M. (2016, A convergent numerical method for the Navier–Stokes–Fourier system. IMA J. Numer. Anal., 36, 1477--1535), where a similar scheme is studied for the case of classical Laplace diffusion. We compare the two schemes and point out that the discretization of the energy diffusion terms in the reference scheme is not compatible with the model. Finally, we provide several numerical experiments for both schemes to demonstrate the numerical convergence, positivity of the discrete density, as well as the difference between the schemes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IMA Journal of Numerical Analysis
ISSN
0272-4979
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
24
Pages from-to
2045-2068
UT code for WoS article
000491253300015
EID of the result in the Scopus database
2-s2.0-85074151949