A finite volume scheme for the Euler system inspired by the two velocities approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521527" target="_blank" >RIV/67985840:_____/20:00521527 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00211-019-01078-y" target="_blank" >https://doi.org/10.1007/s00211-019-01078-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-019-01078-y" target="_blank" >10.1007/s00211-019-01078-y</a>
Alternative languages
Result language
angličtina
Original language name
A finite volume scheme for the Euler system inspired by the two velocities approach
Original language description
We propose a new finite volume scheme for the Euler system of gas dynamics motivated by the model proposed by H. Brenner. Numerical viscosity imposed through upwinding acts on the velocity field rather than on the convected quantities. The resulting numerical method enjoys the crucial properties of the Euler system, in particular positivity of the approximate density and pressure and the minimal entropy principle. In addition, the approximate solutions generate a dissipative measure-valued solutions of the limit system. In particular, the numerical solutions converge to the smooth solution of the system as long as the latter exists.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Volume of the periodical
144
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
44
Pages from-to
89-132
UT code for WoS article
000492572700001
EID of the result in the Scopus database
2-s2.0-85074617198