All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00522456" target="_blank" >RIV/67985840:_____/20:00522456 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ijnonlinmec.2020.103431" target="_blank" >https://doi.org/10.1016/j.ijnonlinmec.2020.103431</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijnonlinmec.2020.103431" target="_blank" >10.1016/j.ijnonlinmec.2020.103431</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior

  • Original language description

    We prove the existence of a weak solution to the equations describing the inertial motions of a coupled system constituted by a rigid body containing a viscous compressible fluid. We then provide a weak-strong uniqueness result that allows us to completely characterize, under certain physical assumptions, the asymptotic behavior in time of the weak solution corresponding to smooth data of restricted “size”, and show that it tends to a uniquely determined steady-state.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Non-Linear Mechanics

  • ISSN

    0020-7462

  • e-ISSN

  • Volume of the periodical

    121

  • Issue of the periodical within the volume

    May

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    103431

  • UT code for WoS article

    000527346800008

  • EID of the result in the Scopus database

    2-s2.0-85079123182