On the motion of a body with a cavity filled with magnetohydrodynamic fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585181" target="_blank" >RIV/67985840:_____/24:00585181 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2024.03.009" target="_blank" >https://doi.org/10.1016/j.jde.2024.03.009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2024.03.009" target="_blank" >10.1016/j.jde.2024.03.009</a>
Alternative languages
Result language
angličtina
Original language name
On the motion of a body with a cavity filled with magnetohydrodynamic fluid
Original language description
We study the dynamics of a coupled system, formed by a rigid body with a cavity entirely filled with magnetohydrodynamic compressible fluid. Our aim is to derive the global existence of the unique classical solutions and weak solutions to this system. Moreover, we show the weak-strong uniqueness principle which means that a weak solution coincides with a strong solution on the time existence of a strong solution, provided they emanate from the same initial data.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GC22-08633J" target="_blank" >GC22-08633J: Qualitative Theory of the MHD and Related Equations</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
398
Issue of the periodical within the volume
July 25
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
53
Pages from-to
218-270
UT code for WoS article
001216483100001
EID of the result in the Scopus database
2-s2.0-85189557958