All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the distribution of runners on a circle

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524140" target="_blank" >RIV/67985840:_____/20:00524140 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.ejc.2020.103137" target="_blank" >https://doi.org/10.1016/j.ejc.2020.103137</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejc.2020.103137" target="_blank" >10.1016/j.ejc.2020.103137</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the distribution of runners on a circle

  • Original language description

    Consider n runners running on a circular track of unit length with constant speeds such that k of the speeds are distinct. We show that, at some time, there will exist a sector S which contains at least |S|n+Ω(k) runners. The bound is asymptotically tight up to a logarithmic factor. The result can be generalized as follows. Let f(x,y) be a complex bivariate polynomial whose Newton polytope has k vertices. Then there exist a∈ℂ∖{0} and a complex sector S={reıθ:r>0,α≤θ≤β} such that the univariate polynomial f(x,a) contains at least [Formula presented]n+Ω(k) non-zero roots in S (where n is the total number of such roots and 0≤(β−α)≤2π). This shows that the Real τ-Conjecture of Koiran (2011) implies the conjecture on Newton polytopes of Koiran et al. (2015).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GX19-27871X" target="_blank" >GX19-27871X: Efficient approximation algorithms and circuit complexity</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Journal of Combinatorics

  • ISSN

    0195-6698

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    October

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    103137

  • UT code for WoS article

    000556551000004

  • EID of the result in the Scopus database

    2-s2.0-85083739134