All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Stochastic Navier-Stokes–Fourier equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524143" target="_blank" >RIV/67985840:_____/20:00524143 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1512/iumj.2020.69.7895" target="_blank" >http://dx.doi.org/10.1512/iumj.2020.69.7895</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1512/iumj.2020.69.7895" target="_blank" >10.1512/iumj.2020.69.7895</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Stochastic Navier-Stokes–Fourier equations

  • Original language description

    We study the full Navier-Stokes-Fourier system governing the motion of a general viscous, heat-conducting, and compressible fluid subject to stochastic perturbation. Stochastic effects are implemented through (i) random initial data, (ii) a forcing term in the momentum equation represented by a multiplicative white noise, (iii) random heat source in the internal energy balance. We establish existence of a weak martingale solution under physically grounded structural assumptions. As a byproduct of our theory we can show that stationary martingale solutions only exist in certain trivial cases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indiana University Mathematics Journal

  • ISSN

    0022-2518

  • e-ISSN

  • Volume of the periodical

    69

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    65

  • Pages from-to

    911-975

  • UT code for WoS article

    000530713400007

  • EID of the result in the Scopus database

    2-s2.0-85089068272