All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Almost all trees are almost graceful

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524449" target="_blank" >RIV/67985840:_____/20:00524449 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/rsa.20906" target="_blank" >https://doi.org/10.1002/rsa.20906</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rsa.20906" target="_blank" >10.1002/rsa.20906</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Almost all trees are almost graceful

  • Original language description

    The Graceful Tree Conjecture of Rosa from 1967 asserts that the vertices of each tree T of order n can be injectively labeled by using the numbers {1,2,…,n} in such a way that the absolute differences induced on the edges are pairwise distinct. We prove the following relaxation of the conjecture for each γ>0 and for all n>n0(γ). Suppose that (i) the maximum degree of T is bounded by Oγ????(n∕log n), and (ii) the vertex labels are chosen from the set {1,2,…,⌈(1+γ)n⌉}. Then there is an injective labeling of V(T) such that the absolute differences on the edges are pairwise distinct. In particular, asymptotically almost all trees on n vertices admit such a labeling. The proof proceeds by showing that a certain very natural randomized algorithm produces a desired labeling with high probability.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Random Structures and Algorithms

  • ISSN

    1042-9832

  • e-ISSN

  • Volume of the periodical

    56

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    948-987

  • UT code for WoS article

    000514232400001

  • EID of the result in the Scopus database

    2-s2.0-85079856601