Almost all trees are almost graceful
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524449" target="_blank" >RIV/67985840:_____/20:00524449 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/rsa.20906" target="_blank" >https://doi.org/10.1002/rsa.20906</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rsa.20906" target="_blank" >10.1002/rsa.20906</a>
Alternative languages
Result language
angličtina
Original language name
Almost all trees are almost graceful
Original language description
The Graceful Tree Conjecture of Rosa from 1967 asserts that the vertices of each tree T of order n can be injectively labeled by using the numbers {1,2,…,n} in such a way that the absolute differences induced on the edges are pairwise distinct. We prove the following relaxation of the conjecture for each γ>0 and for all n>n0(γ). Suppose that (i) the maximum degree of T is bounded by Oγ????(n∕log n), and (ii) the vertex labels are chosen from the set {1,2,…,⌈(1+γ)n⌉}. Then there is an injective labeling of V(T) such that the absolute differences on the edges are pairwise distinct. In particular, asymptotically almost all trees on n vertices admit such a labeling. The proof proceeds by showing that a certain very natural randomized algorithm produces a desired labeling with high probability.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Random Structures and Algorithms
ISSN
1042-9832
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
40
Pages from-to
948-987
UT code for WoS article
000514232400001
EID of the result in the Scopus database
2-s2.0-85079856601