A note on antimagic labelings of trees
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F14%3A43924759" target="_blank" >RIV/49777513:23520/14:43924759 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A note on antimagic labelings of trees
Original language description
In 1990, Hartsfield and Ringel conjectured "Every tree except K2 is antimagic", where antimagic means that there is a bijection from E(G) to {1, 2, ... , |E(G)|} such that at each vertex the weight (sum of the labels of incident edges) is different. We call such a labeling a vertex antimagic edge labeling. As a step towards proving this conjecture, we provide a method whereby, given any degree sequence pertaining to a tree, we can construct an antimagic tree based on this sequence. Furthermore, swappingthe roles of edges and vertices with respect to a labeling, we provide a method to construct an edge antimagic vertex labeling for any tree and we consider edge anti magic vertex labeling of graphs in general.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the Institute of Combinatorics and its Applications
ISSN
1183-1278
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
Neuveden
Country of publishing house
CA - CANADA
Number of pages
7
Pages from-to
94-100
UT code for WoS article
—
EID of the result in the Scopus database
—