Joint numerical ranges: Recent advances and applications minicourse by V. Müller and Yu. Tomilov
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00532938" target="_blank" >RIV/67985840:_____/20:00532938 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/conop-2020-0102" target="_blank" >https://doi.org/10.1515/conop-2020-0102</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/conop-2020-0102" target="_blank" >10.1515/conop-2020-0102</a>
Alternative languages
Result language
angličtina
Original language name
Joint numerical ranges: Recent advances and applications minicourse by V. Müller and Yu. Tomilov
Original language description
We present a survey of some recent results concerning joint numerical ranges of n-tuples of Hilbert space operators, accompanied with several new observations and remarks. Thereafter, numerical ranges techniques will be applied to various problems of operator theory. In particular, we discuss problems concerning orbits of operators, diagonals of operators and their tuples, and pinching problems. Lastly, motivated by known results on the numerical radius of a single operator, we examine whether, given bounded linear operators T1, . . . , Tn on a Hilbert space H, there exists a unit vector x 2 H such that jhTjx, xij is “large” for all j = 1, . . . , n.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Concrete Operators
ISSN
2299-3282
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
1
Country of publishing house
PL - POLAND
Number of pages
22
Pages from-to
133-154
UT code for WoS article
000581882400002
EID of the result in the Scopus database
2-s2.0-85095983492