In search of convexity: Diagonals and numerical ranges
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544892" target="_blank" >RIV/67985840:_____/21:00544892 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1112/blms.12480" target="_blank" >https://doi.org/10.1112/blms.12480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/blms.12480" target="_blank" >10.1112/blms.12480</a>
Alternative languages
Result language
angličtina
Original language name
In search of convexity: Diagonals and numerical ranges
Original language description
We show that the set of all possible constant diagonals of a bounded Hilbert space operator is always convex. This, in particular, answers an open question of Bourin (2003). Moreover, we show that the joint numerical range of a commuting operator tuple is, in general, not convex, which fills a gap in the literature. We also prove that the Asplund–Ptak numerical range (which is convex for pairs of operators) is, in general, not convex for tuples of operators.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Bulletin of the London Mathematical Society
ISSN
0024-6093
e-ISSN
1469-2120
Volume of the periodical
53
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
1016-1029
UT code for WoS article
000625165700001
EID of the result in the Scopus database
2-s2.0-85101917684