All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Homogeneous structures with nonuniversal automorphism groups

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00538864" target="_blank" >RIV/67985840:_____/20:00538864 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1017/jsl.2020.10" target="_blank" >https://doi.org/10.1017/jsl.2020.10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/jsl.2020.10" target="_blank" >10.1017/jsl.2020.10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Homogeneous structures with nonuniversal automorphism groups

  • Original language description

    We present three examples of countable homogeneous structures (also called Fraïssé limits) whose automorphism groups are not universal, namely, fail to contain isomorphic copies of all automorphism groups of their substructures. Our first example is a particular case of a rather general construction on Fraïssé classes, which we call diversification, leading to automorphism groups containing copies of all finite groups. Our second example is a special case of another general construction on Fraïssé classes, the mixed sums, leading to a Fraïssé class with all finite symmetric groups appearing as automorphism groups and at the same time with a torsion-free automorphism group of its Fraïssé limit. Our last example is a Fraïssé class of finite models with arbitrarily large finite abelian automorphism groups, such that the automorphism group of its Fraïssé limit is again torsion-free.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-27844S" target="_blank" >GA17-27844S: Generic objects</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Symbolic Logic

  • ISSN

    0022-4812

  • e-ISSN

  • Volume of the periodical

    85

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    817-827

  • UT code for WoS article

    000612018200015

  • EID of the result in the Scopus database

    2-s2.0-85100137732