Cohen-like first order structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00560281" target="_blank" >RIV/67985840:_____/23:00560281 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.apal.2022.103172" target="_blank" >https://doi.org/10.1016/j.apal.2022.103172</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apal.2022.103172" target="_blank" >10.1016/j.apal.2022.103172</a>
Alternative languages
Result language
angličtina
Original language name
Cohen-like first order structures
Original language description
We study uncountable structures similar to the Fraïssé limits. The standard inductive arguments from the Fraïssé theory are replaced by forcing, so the structures we obtain are highly sensitive to the universe of set theory. In particular, the generic structures we investigate exist only in generic extensions of the universe. We prove that in most of the interesting cases the uncountable generic structures are rigid. Moreover, we provide a (consistent) example of an uncountable, dense set of reals with the group of integers as its automorphism group.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GX20-31529X" target="_blank" >GX20-31529X: Abstract convergence schemes and their complexities</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Pure and Applied Logic
ISSN
0168-0072
e-ISSN
1873-2461
Volume of the periodical
174
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
103172
UT code for WoS article
000844079500007
EID of the result in the Scopus database
2-s2.0-85135701963