All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On strong continuity of weak solutions to the compressible Euler system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541263" target="_blank" >RIV/67985840:_____/21:00541263 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00332-021-09694-5" target="_blank" >https://doi.org/10.1007/s00332-021-09694-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00332-021-09694-5" target="_blank" >10.1007/s00332-021-09694-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On strong continuity of weak solutions to the compressible Euler system

  • Original language description

    Let S={τn}n=1∞⊂(0,T) be an arbitrary countable (dense) set. We show that for any given initial density and momentum, the compressible Euler system admits (infinitely many) admissible weak solutions that are not strongly continuous at each τn, n= 1 , 2 , ⋯. The proof is based on a refined version of the oscillatory lemma of De Lellis and Székelyhidi with coefficients that may be discontinuous on a set of zero Lebesgue measure.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Nonlinear Science

  • ISSN

    0938-8974

  • e-ISSN

    1432-1467

  • Volume of the periodical

    31

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    33

  • UT code for WoS article

    000626661900001

  • EID of the result in the Scopus database

    2-s2.0-85102189840