On strong continuity of weak solutions to the compressible Euler system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00541263" target="_blank" >RIV/67985840:_____/21:00541263 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00332-021-09694-5" target="_blank" >https://doi.org/10.1007/s00332-021-09694-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00332-021-09694-5" target="_blank" >10.1007/s00332-021-09694-5</a>
Alternative languages
Result language
angličtina
Original language name
On strong continuity of weak solutions to the compressible Euler system
Original language description
Let S={τn}n=1∞⊂(0,T) be an arbitrary countable (dense) set. We show that for any given initial density and momentum, the compressible Euler system admits (infinitely many) admissible weak solutions that are not strongly continuous at each τn, n= 1 , 2 , ⋯. The proof is based on a refined version of the oscillatory lemma of De Lellis and Székelyhidi with coefficients that may be discontinuous on a set of zero Lebesgue measure.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Nonlinear Science
ISSN
0938-8974
e-ISSN
1432-1467
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
33
UT code for WoS article
000626661900001
EID of the result in the Scopus database
2-s2.0-85102189840