On the motion of rigid bodies in a perfect fluid
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542581" target="_blank" >RIV/67985840:_____/21:00542581 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00030-021-00697-5" target="_blank" >https://doi.org/10.1007/s00030-021-00697-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00030-021-00697-5" target="_blank" >10.1007/s00030-021-00697-5</a>
Alternative languages
Result language
angličtina
Original language name
On the motion of rigid bodies in a perfect fluid
Original language description
We consider the problem of motion of several rigid bodies immersed in a perfect compressible fluid. Using the method of convex integration we establish the existence of infinitely many weak solutions with a priori prescribed motion of rigid bodies. In particular, the dynamics is completely time–reversible at the motion of rigid bodies although the solutions comply with the standard entropy admissibility criterion.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA18-05974S" target="_blank" >GA18-05974S: Oscillations and concentrations versus stability in the equations of mathematical fluid dynamics</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nodea-Nonlinear Differential Equations and Applications
ISSN
1021-9722
e-ISSN
1420-9004
Volume of the periodical
28
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
35
UT code for WoS article
000647748100001
EID of the result in the Scopus database
2-s2.0-85105431430