Automating algebraic proof systems is NP-hard
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543415" target="_blank" >RIV/67985840:_____/21:00543415 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1145/3406325.3451080" target="_blank" >http://dx.doi.org/10.1145/3406325.3451080</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3406325.3451080" target="_blank" >10.1145/3406325.3451080</a>
Alternative languages
Result language
angličtina
Original language name
Automating algebraic proof systems is NP-hard
Original language description
We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
STOC 2021: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
ISBN
978-1-4503-8053-9
ISSN
—
e-ISSN
—
Number of pages
14
Pages from-to
209-222
Publisher name
ACM
Place of publication
New York
Event location
Virtual
Event date
Jun 21, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—