All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automating algebraic proof systems is NP-hard

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00543415" target="_blank" >RIV/67985840:_____/21:00543415 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1145/3406325.3451080" target="_blank" >http://dx.doi.org/10.1145/3406325.3451080</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1145/3406325.3451080" target="_blank" >10.1145/3406325.3451080</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automating algebraic proof systems is NP-hard

  • Original language description

    We show that algebraic proofs are hard to find: Given an unsatisfiable CNF formula F, it is NP-hard to find a refutation of F in the Nullstellensatz, Polynomial Calculus, or Sherali–Adams proof systems in time polynomial in the size of the shortest such refutation. Our work extends, and gives a simplified proof of, the recent breakthrough of Atserias and Müller (JACM 2020) that established an analogous result for Resolution.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    STOC 2021: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing

  • ISBN

    978-1-4503-8053-9

  • ISSN

  • e-ISSN

  • Number of pages

    14

  • Pages from-to

    209-222

  • Publisher name

    ACM

  • Place of publication

    New York

  • Event location

    Virtual

  • Event date

    Jun 21, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article