The power of negative reasoning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546771" target="_blank" >RIV/67985840:_____/21:00546771 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2021.40" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.CCC.2021.40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2021.40" target="_blank" >10.4230/LIPIcs.CCC.2021.40</a>
Alternative languages
Result language
angličtina
Original language name
The power of negative reasoning
Original language description
Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s to understand the power of Gröbner basis computations, linear and semidefinite programming hierarchies, and other methods. Such proof systems are defined alternately with only the original variables of the problem and with special formal variables for positive and negative literals, but there seems to have been no study how these different definitions affect the power of the proof systems. We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding formal variables for negative literals makes the proof systems exponentially stronger, with respect to the number of terms in the proofs. These separations are witnessed by CNF formulas that are easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares cannot efficiently simulate resolution without having access to variables for negative literals.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
36th Computational Complexity Conference (CCC 2021)
ISBN
978-3-95977-193-1
ISSN
1868-8969
e-ISSN
—
Number of pages
24
Pages from-to
40
Publisher name
Schloss Dagstuhl, Leibniz-Zentrum für Informatik
Place of publication
Dagstuhl
Event location
Toronto
Event date
Jul 20, 2021
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—