All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Cutting sets of continuous functions on the unit interval

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00557882" target="_blank" >RIV/67985840:_____/22:00557882 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.indag.2021.12.006" target="_blank" >https://doi.org/10.1016/j.indag.2021.12.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.indag.2021.12.006" target="_blank" >10.1016/j.indag.2021.12.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Cutting sets of continuous functions on the unit interval

  • Original language description

    For a function f:[0,1]→R, we consider the set E(f) of points at which f cuts the real axis. Given f:[0,1]→R and a Cantor set D⊂[0,1] with {0,1}⊂D, we obtain conditions equivalent to the conjunction f∈C[0,1] (or f∈C∞[0,1]) and D⊂E(f). This generalizes some ideas of Zabeti. We observe that, if f is continuous, then E(f) is a closed nowhere dense subset of f−1[{0}]. Additionally, if Intf−1[{0}]=0̸, each x∈{0,1}∩E(f) is an accumulation point of E(f). Our main result states that, for a closed nowhere dense set F⊂[0,1] with each x∈{0,1}∩F being an accumulation point of F, there exists f∈C∞[0,1] such that F=E(f)=f−1[{0}].

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF20-22230L" target="_blank" >GF20-22230L: Banach spaces of continuous and Lipschitz functions</a><br>

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Indagationes Mathematicae-New Series

  • ISSN

    0019-3577

  • e-ISSN

    1872-6100

  • Volume of the periodical

    33

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    625-635

  • UT code for WoS article

    000830645500007

  • EID of the result in the Scopus database

    2-s2.0-85122433738