Polish spaces of Banach spaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00558103" target="_blank" >RIV/67985840:_____/22:00558103 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11320/22:10456402
Result on the web
<a href="https://doi.org/10.1017/fms.2022.16" target="_blank" >https://doi.org/10.1017/fms.2022.16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/fms.2022.16" target="_blank" >10.1017/fms.2022.16</a>
Alternative languages
Result language
angličtina
Original language name
Polish spaces of Banach spaces
Original language description
We present and thoroughly study natural Polish spaces of separable Banach spaces. These spaces are defined as spaces of norms, respectively pseudonorms, on the countable infinite-dimensional rational vector space. We provide an exhaustive comparison of these spaces with admissible topologies recently introduced by Godefroy and Saint-Raymond and show that Borel complexities differ little with respect to these two topological approaches. We investigate generic properties in these spaces and compare them with those in admissible topologies, confirming the suspicion of Godefroy and Saint-Raymond that they depend on the choice of the admissible topology.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Forum of Mathematics, Sigma
ISSN
2050-5094
e-ISSN
2050-5094
Volume of the periodical
10
Issue of the periodical within the volume
May
Country of publishing house
GB - UNITED KINGDOM
Number of pages
28
Pages from-to
e26
UT code for WoS article
000800713800001
EID of the result in the Scopus database
2-s2.0-85129552946