Projecting Lipschitz functions onto spaces of polynomials
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559509" target="_blank" >RIV/67985840:_____/22:00559509 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/22:00360035
Result on the web
<a href="https://doi.org/10.1007/s00009-022-02075-6" target="_blank" >https://doi.org/10.1007/s00009-022-02075-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00009-022-02075-6" target="_blank" >10.1007/s00009-022-02075-6</a>
Alternative languages
Result language
angličtina
Original language name
Projecting Lipschitz functions onto spaces of polynomials
Original language description
The Banach space P(2X) of 2-homogeneous polynomials on the Banach space X can be naturally embedded in the Banach space Lip (BX) of real-valued Lipschitz functions on BX that vanish at 0. We investigate whether P(2X) is a complemented subspace of Lip (BX). This line of research can be considered as a polynomial counterpart to a classical result by Joram Lindenstrauss, asserting that P(1X) = X∗ is complemented in Lip (BX) for every Banach space X. Our main result asserts that P(2X) is not complemented in Lip (BX) for every Banach space X with non-trivial type.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mediterranean Journal of Mathematics
ISSN
1660-5446
e-ISSN
1660-5454
Volume of the periodical
19
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
22
Pages from-to
190
UT code for WoS article
000824689300002
EID of the result in the Scopus database
2-s2.0-85134320458