All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Projecting Lipschitz functions onto spaces of polynomials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00559509" target="_blank" >RIV/67985840:_____/22:00559509 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21230/22:00360035

  • Result on the web

    <a href="https://doi.org/10.1007/s00009-022-02075-6" target="_blank" >https://doi.org/10.1007/s00009-022-02075-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00009-022-02075-6" target="_blank" >10.1007/s00009-022-02075-6</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Projecting Lipschitz functions onto spaces of polynomials

  • Original language description

    The Banach space P(2X) of 2-homogeneous polynomials on the Banach space X can be naturally embedded in the Banach space Lip (BX) of real-valued Lipschitz functions on BX that vanish at 0. We investigate whether P(2X) is a complemented subspace of Lip (BX). This line of research can be considered as a polynomial counterpart to a classical result by Joram Lindenstrauss, asserting that P(1X) = X∗ is complemented in Lip (BX) for every Banach space X. Our main result asserts that P(2X) is not complemented in Lip (BX) for every Banach space X with non-trivial type.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mediterranean Journal of Mathematics

  • ISSN

    1660-5446

  • e-ISSN

    1660-5454

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    22

  • Pages from-to

    190

  • UT code for WoS article

    000824689300002

  • EID of the result in the Scopus database

    2-s2.0-85134320458